Urban design, transport, and health 1

City planning and population health: a global challenge

Billie Giles-Corti, Anne Vernez-Moudon, Rodrigo Reis, Gavin Turrell, Andrew L Dannenberg, Hannah Badland, Sarah Foster, Melanie Lowe, James F Sallis, Mark Stevenson, Neville Owen

Significant global health challenges are being confronted in the 21st century, prompting calls to rethink approaches to disease prevention. A key part of the solution is city planning that reduces non-communicable diseases and road trauma while also managing rapid urbanisation. This Series of papers considers the health impacts of city planning through transport mode choices. In this, the first paper, we identify eight integrated regional and local interventions that, when combined, encourage walking, cycling, and public transport use, while reducing private motor vehicle use. These interventions are destination accessibility, equitable distribution of employment across cities, managing demand by reducing the availability and increasing the cost of parking, designing pedestrian-friendly and cycling-friendly movement networks, achieving optimum levels of residential density, reducing distance to public transport, and enhancing the desirability of active travel modes (eg, creating safe attractive neighbourhoods and safe, affordable, and convenient public transport). Together, these interventions will create healthier and more sustainable compact cities that reduce the environmental, social, and behavioural risk factors that affect lifestyle choices, levels of traffic, environmental pollution, noise, and crime. The health sector, including health ministers, must lead in advocating for integrated multisector city planning that prioritises health, sustainability, and liveability outcomes, particularly in rapidly changing low-income and middle-income countries. We recommend establishing a set of indicators to benchmark and monitor progress towards achievement of more compact cities that promote health and reduce health inequities.

Introduction

Significant global health challenges are being confronted in the 21st century, including increases in unhealthy diets, physical inactivity, non-communicable diseases (NCDs), injuries from road trauma, and obesity, combined with population growth, rapid urbanisation, and climate change, prompting repeated calls to rethink approaches to prevention.1-5 Decisions about housing, food, water, energy, transport, social services, and health care6 will profoundly affect the health, wellbeing, and safety of growing and ageing urban populations.4,5 With the world’s population estimated to reach 10 billion people by 2050, and 75% of this population living in cities,7 city planning is now recognised as part of a comprehensive solution to tackling adverse health outcomes.8

Associations between city planning and health are not new. In the 19th century, planning curbed infectious disease outbreaks in industrialising cities through improvements in sanitation and housing and separation of residential areas from industrial pollution.9 In the 21st century, well planned cities have the potential to reduce NCDs and road trauma and to promote health and wellbeing more broadly. This could be achieved by reducing automobile dependency, traffic exposure, pollution, noise, and urban heat-island effects, while enhancing mental health, contributing to climate change mitigation, and promoting walking and cycling in ways that are safe, comfortable, and desirable.

Leading global agencies recognise that city planning and management decisions affect the liveability of cities10 and, ultimately, the health and wellbeing of residents. WHO recommends “placing health and health equity at the heart of [city] governance and planning”,11 highlighting the need for integrated urban planning, transport, and housing policy. This mirrors the Organisation for Economic Co-operation and Development’s call for leadership from “transport, land use and health ministers” to create the “legal, administrative and technical frameworks” that promote walking.12 Similarly, the UN has endorsed integrated
agendas to combat NCDs. The UN’s Sustainable Development Goals include promoting healthy lives and wellbeing by making cities inclusive, safe, resilient, and sustainable. However, changing the way cities are planned, built, and managed will require bipartisan political leadership and community engagement.

In a rapidly urbanising world, understanding how urban and transport planning and design decisions affect health is important. City planners have traditionally focused on the physical, social, economic, and environmental aspects of where people live. However, rapid changes in motorised transport have increased the geographical size of urban areas. Combined with unprecedented urban population growth, this change has put transport mobility at the forefront of city planning. Early in the 20th century, engineers began addressing traffic congestion and road trauma in European and North American cities. Transport engineering soon emerged as a new field, gaining political and economic influence with the construction of national motorway networks after World War 2. Transport planning followed as an engineering subfield. City planning and transport planning are now typically run at all levels of government, but in separate agencies. Both are closely linked to political systems because they oversee major capital-intensive operations. However, these disciplines currently operate in separate academic settings with their research underpinned by different theoretical approaches.

This Lancet Series focuses on the health impacts of city planning through transport mode choices. Drawing on evidence from multiple disciplines and using critical and systematic reviews where available, in this, the first paper we review the published work and propose pathways through which urban and transport planning and urban design (together referred to as city planning) directly and indirectly affect NCDs, traffic injuries, and other adverse health outcomes. We also identify eight urban and transport planning and design interventions and consider their influence on eight environmental, social, and behavioural health risk exposures. The second paper in this Series models some of the pathways through which city planning affects health. The third paper focuses on research translation by considering how science can be, and is already being, used to guide city planning policy and practice that create compact cities that promote health.

Urban planning and transport interventions

Eight interventions to promote health

Urban planning and transport planning academics have long sought to understand ways to reduce motor vehicle kilometres travelled and encourage use of public transport and active transport modes such as walking and cycling. These academics have identified six key built-form characteristics and related policies that are referred to as the 6Ds. Building on this work, we identify eight integrated interventions that are needed to create cities that promote health (table 1). We also differentiate between urban and transport planning and design policies that determine regional and local outcomes.

At the regional level, urban and transport planning influences the availability and accessibility of employment and key destinations required for daily living (eg, food outlets, educational facilities, and health and community services), particularly by public transport. Urban and transport planning also manages demand for driving (eg, the ease and cost of driving and car parking) relative to active modes of transport. Local urban design and transport policies influence local neighbourhoods’ structure, look, feel, and convenience (eg, street network design, availability of walking and cycling infrastructure, residential densities, the diversity and mix of land-use, and housing types); the desirability of neighbourhoods (eg, levels of crime and traffic safety); and public transport (eg, convenience, affordability, service frequency, safety, and comfort). Achievement of more compact sustainable cities that promote health requires integrated regional and local planning and design.

Pathways to better health through urban planning and design

The figure shows potential pathways through which city planning decisions influence the health and wellbeing of residents. Moving from left to right, the figure shows how eight urban system policies work together to create urban and transport planning and design interventions that directly and indirectly affect health by influencing daily living options and transport mode choices and demand. In turn, these interventions determine eight risk exposures related to NCDs, road trauma, and other adverse health outcomes. Next, these risk exposures determine intermediary outcomes (eg, greenhouse gas emissions and chronic disease risk factors) as well as traffic injury and disease outcomes, which ultimately determine quality of life and health, social, and environmental equity.

Urban environments and health inequities

According to WHO and UN Habitat’s report *Hidden Cities*, all urban environments have the ability to produce health inequities that are “systematic, socially produced (and therefore modifiable), and unfair.” The nature and extent of these health inequities vary within and between countries, partly as a result of differing progress in nutritional, demographic, and epidemiological transitions. The socioeconomically disadvantaged have the highest rates of mortality and morbidity for most major causes of death, including infectious diseases, NCDs, and traffic injuries. Independent of individual socioeconomic position (compositional factors), characteristics of the places in which people live (contextual factors) affect health inequities (figure).
Table 1: Urban and transport planning and design interventions and features required to create compact cities that enhance health and wellbeing

<table>
<thead>
<tr>
<th>Regional planning</th>
<th>Urban and transport planning and design features</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Destination accessibility</td>
<td>Regional employment, facilities, and services conveniently accessible by public transport; destinations for daily living available locally</td>
<td>Jobs, facilities, and services within 30 min travel from home by public transport; daily living destinations within walking distance</td>
</tr>
<tr>
<td>Distribution of employment</td>
<td>An appropriate mix of employment available across a region</td>
<td>A job-housing balance from 0.8 to 1.2</td>
</tr>
<tr>
<td>Demand management</td>
<td>Parking supply and pricing policies increase the attractiveness of using alternative travel modes to driving</td>
<td>Building codes and other government policies that minimise car parking</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Local urban design</th>
<th>Urban and transport planning and design features</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Design</td>
<td>Urban design creates walkable catchments around activity centres and incorporates accessible public open space; street networks minimise distances between homes and daily living destinations, reduce traffic exposure, and create safe pedestrian, cycling, and public transport networks; lot* layouts designed to increase residential densities and promote natural surveillance</td>
<td>High street connectivity including ped-sheds ≤0.6 within 0.8–1.2 km (ie, 1–15 min walk) of activity centres, transport hubs, and schools; separated pedestrian and cycle paths; local public open space provided; housing overlooks streets and public open spaces</td>
</tr>
<tr>
<td>Density</td>
<td>Residential densities sufficient to support the viability of local business and high-frequency public transport services</td>
<td>Multiunit housing built around activity centres with shops, services, and transport hubs</td>
</tr>
<tr>
<td>Distance to public transport</td>
<td>High-frequency public transport located within short walking distances from homes</td>
<td>Bus stops accessible ≤400 m; rail stops accessible ≤800 m from homes</td>
</tr>
<tr>
<td>Diversity</td>
<td>Residential areas built with different types of housing mixed with commercial, public, and recreational opportunities</td>
<td>Different types of housing available near, around, and on top of shops and services required for daily living</td>
</tr>
<tr>
<td>Desirability</td>
<td>Neighbourhoods designed to be safe, attractive, and accessible; public transport that is convenient, affordable, frequent, safe, and comfortable</td>
<td>Crime prevention design principles incorporated into residential and commercial developments; urban greening strategies implemented; traffic minimised, calmed, and separated from pedestrians and cyclists, particularly near schools</td>
</tr>
</tbody>
</table>

*Also known as plots in some countries, including those in the UK.

Risk exposures influenced by city planning

Traffic exposure

Here we consider evidence for eight environmental, social, and behavioural risk exposures related to urban and transport planning and design decisions (figure), which in turn affect NCDs, injuries, and other adverse health outcomes.

Private motor vehicle sales are often used as an indicator of economic growth, development, and modernisation. However, a higher reliance on private motor vehicles increases traffic volumes and road trauma, resulting in injury and early death. Road traffic injuries are the eighth leading cause of disability-adjusted life years (DALYs) worldwide, and, in some LMICs, road traffic injuries are the second leading cause of DALYs, with young people bearing the greatest burden. Between 1990 and 2010, overall global DALYs due to pedestrian injuries increased by more than those for other transport injuries. Indeed, deaths from road transport injuries exceed those from HIV/AIDS, tuberculosis, and malaria. By 2030, road traffic injury-related DALYs are estimated to be more than ten-times those of tuberculosis and malaria combined and twice those of HIV/AIDS.

Urban and transport planning and design decisions directly affect the need for private motor vehicles by determining the location of housing in relation to employment, education, and the services required for daily living. These decisions affect travel distances and, in the absence of convenient transport options, traffic volumes, both of which are related to road trauma. Although the risk of collision increases with higher vehicular traffic volume and increased population density, once a critical mass of walking or cycling is achieved, the collision rate falls, although the overall number of injuries and deaths might still rise. In high-income and middle-income countries, efforts to improve traffic safety have focused mainly on safe road design for private vehicles, vehicle crashworthiness, and modifying driver behaviour (eg, driving at slower speeds and not driving while impaired). Land-use and transport planning that reduces automobile dependence and decreases vehicle kilometres travelled can also reduce the risk of road trauma.

The health burden of motor vehicle-related injuries continues to disproportionately affect active transport users (as discussed in this Series) and those without access to a vehicle, including poor, young, and older people. Concerns about traffic and road safety are a major deterrent to parents permitting children to use active travel modes. In high-income countries, such as the USA and Australia, many city streets have become child-free zones, with rapid declines in the number of children using active transport modes to travel to and from school and around their neighbourhoods.

In several countries (eg, Germany, France, The Netherlands, and Sweden), injury and fatality rates for active transport users have been reduced by more than 70% (from 1975 to 2001). These countries have implemented new laws of strict liability, where vulnerable road users (not drivers) are assumed to be innocent. These countries have also lowered speed limits in towns and cities to 30 km/h; introduced high-quality transport systems; introduced demand management strategies, including reduced car parking; devised protective road...
designs that reduce conflicts between pedestrians, cyclists, and drivers; and improved traffic signals.44,45 These practices could be trialled elsewhere to reduce the global burden of road injury while also increasing the demand for active travel and reducing NCD risks.

Air pollution

Several meta-analyses and reviews show a relationship between air pollution exposure and health impacts, including the incidence and prevalence of childhood asthma and wheeze,46 asthma exacerbation,47 impaired lung function,48 cardiovascular mortality and morbidity,49 all-cause mortality,50 hospital admissions,50 and restricted physical activity.48 The global disease burden attributed to ambient particulate matter pollution from all sources remained stable between 1990 and 2010, at approximately 3% of DALYs.50 However, concerns are growing about urban air pollution in LMICs caused by increasing population concentrations, industrial pollution, burning of solid

Figure: Direct and indirect pathways through which urban and transport planning and design decisions influence health and wellbeing
fueled, and the unprecedented rise in motor vehicle ownership.31,32

Motor vehicle traffic exposure is a major source of air pollution in both high-income countries and LMICs. People living within 300 m of busy roads are exposed to higher levels of pollutants, including particulate matter, carbon monoxide, and nitrogen oxide.53 Cars are typically older in LMICs and generate higher emissions than cars in high-income countries.34

The transport sector also indirectly affects health through climate change pathways by accounting for 25% of global carbon dioxide emissions; 75% of which arise from road transport.35 Policies to create a multimodal transport road system that prioritises walking, cycling, and public transport use would substantially reduce urban air pollution and greenhouse gas emissions, producing a range of environmental and health benefits.35,36

Physical activity outdoors, including walking and cycling, can increase exposure to air pollution.36 However, air pollution exposure is substantial for car occupants and is higher for those in cars than for cyclists travelling through the same environment.57,58 Other research suggests that the health benefits of cycling outweigh the risks from air pollution exposure.39,40

City planning can assist by setting homes, schools, parks, and exercise facilities away from heavily trafficked roads and by separating cycle lanes from motor vehicle traffic.41 To protect residents from increased air pollution exposure risk, greater consideration needs to be given to the design of higher density housing sited on heavily trafficked roads.41

Noise

Chronic noise exposure has implications for physical and mental health through annoyance, sleep disturbance, and chronic stress pathways.42 Road traffic noise is the most important source of ambient noise exposure worldwide.43-47 A recent meta-analysis concluded that traffic noise in Europe caused between 400 and 1500 DALYs per million population.45

Road traffic noise exposure influences physical health outcomes such as cardiovascular disease and hypertension;46,47 and airport noise is associated with reduced quality of life, impaired cognitive development in children,48 and reduced psychological wellbeing.49 However, most of the studies included in reviews have been cross-sectional.

The health impacts of noise exposure could be ameliorated by setting homes, schools and other services away from heavily trafficked routes; reducing and slowing road traffic; using noise abating road-surfacing materials; and designing housing to improve sound attenuation, including locating bedrooms and balconies away from noise sources.45,49

Social isolation

Loneliness and social isolation are associated with worse mental health,50 adverse health behaviours (eg, physical inactivity and smoking), and detrimental biological processes (eg, higher blood pressure and C-reactive protein, and poorer immune functioning) compared with regular social contact.51 A 2015 meta-analysis concluded that the impact of social isolation on premature mortality was comparable to other established health risk factors (eg, obesity), highlighting its importance as a public health issue.52

Evidence suggests that urban design and planning can encourage social interactions and cohesion,53 and have subsequent health benefits.54 The design of streets and public open spaces can encourage residents to stop, linger, and interact.55 Accessible and diverse destinations and transport options increase walking trips, which in turn have been linked to unplanned social encounters and sense of community.56 Neighbourhood destinations also provide settings for cultural and informal social activities that can enhance community connections and sense of belonging.56 However, sufficient residential densities are required to create vibrant neighbours.56

As cities grow and densify, a challenge is to create urban environments with sufficient density and local amenities to promote walking and social interactions, while also protecting residents from the high activity levels created by dense neighbourhoods.14 There is little understanding about the optimum density to promote social contact while mitigating other urban exposures, particularly in more vulnerable and low-income populations. These urban design attributes are insufficient to reduce social isolation if the neighbourhood is regarded as undesirable (ie, it is unsafe or poorly maintained). Poor neighbourhood upkeep can signal a breakdown of social control and has been associated with increased crime and a fear of crime.57

Safety from crime

Crime can affect NCDs because people might constrain their own, and their children’s, social and physical activities to avoid places or situations they perceive to be unsafe.58,59 Although evidence is mixed, the associations of crime-related safety and physical inactivity with increased obesity levels are more consistent for groups who perceive themselves to be physically vulnerable to crime (eg, women and older adults) or who are economically vulnerable to crime (eg, low-income and minority populations).59,60 Low-income groups are exposed to more neighbourhood crime and disorder; they are typically more fearful but often have no alternative to walking for transport,59 which might partly explain mixed research findings.59 Crime and the fear of crime also have associations with mental health, but there is less clarity on the causal direction.59

Shopping centres, transport nodes, and street connectivity result in more people walking and circulating locally, but have also been associated with opportunistic crime such as property crime (eg, burglaries, vandalism). Liquor stores and drinking
venues have been associated with higher levels of alcohol consumption and violent crime. Yet neighbourhoods with diverse and accessible destinations and transport options encourage locals to walk, which enhances natural surveillance, in turn, making people feel safer. Encouraging more so-called eyes on the street is central to an approach to crime prevention that incorporates urban design principles, aiming to reduce opportunities for criminal behaviours. Although more eyes on the street are generally interpreted as a source of safety, any benefit depends on whether these people are viewed as accepted users of the space.

Notably, the incidence of crime does not necessarily mean that people feel unsafe or fearful. The presence of physical disorder that typically clusters near non-residential land-use and vacant land has associations with heightened safety concerns. These relationships can be exacerbated for low-income populations who often live in neighbourhoods with concentrated deprivation and have fewer financial resources to buffer themselves from real (or perceived) threats to safety. Furthermore, low-income neighbourhoods can be marred by additional safety hazards (eg, unattended dogs and heavy and high-speed traffic).

Physical inactivity
Physical inactivity and unhealthy diets are the largest contributors to NCDs, and much of the evidence on city planning and health has focused on physical activity. In 2010, about 3·2 million deaths annually were attributed to being insufficiently active, causing 69·3 million global DALYs. Physical inactivity increases the risk of major NCDs, including coronary heart disease, type 2 diabetes, colon cancer, and breast cancer, as well as reducing life expectancy. Land-use and transport planning decisions can influence the convenience, attractiveness, and safety of walking and cycling for transport, as well as the opportunities for, and desirability of, recreational physical activity.

Walking and cycling can serve both transportation and recreational purposes, and both modes can reduce private motor vehicle dependency. Walking and cycling often, but not always, need different infrastructure. Walking is more common than cycling and typically needs less skill, equipment, and infrastructure. However, cycling allows longer distances to be travelled in less time, thereby reducing time spent commuting and increasing access to amenities. Cycling rates are much higher in European cities where cycling-friendly policies and infrastructure investments have been implemented compared with North America and Australia.

Urban planning and design that creates neighbourhoods with connected street network patterns, combined with zoning to support mixed-use and higher-density development (ie, walkable neighbourhoods), promotes walking for transport. Creating cities that facilitate physical activity as part of daily utilitarian activities can promote health and prevent NCDs. By contrast, low-density urban fringe residential development with poor access to shops, services, and public transport fosters automobile dependence and reduces physical activity opportunities.

The evidence for recreational walking is less consistent. Neighbourhood desirability (eg, its aesthetics, levels of traffic, and real and perceived safety from crime and disorder) and access to public open space is inconsistently associated with recreational walking, particularly in studies relying on perceptions rather than objective measures. One review reported that, although there was only moderate evidence that access to parks and aesthetics encouraged recreational walking, all studies that measured the quality of recreational destinations reported positive associations with recreational walking. Indeed, access to high-quality green space has also been shown to enhance both physical and mental health. As cities grow and become more compact, preserving and increasing high-quality public open space will become important as access to private yards and gardens declines.

Prolonged sitting
Sedentary behaviours—ie, too much sitting, as distinct from too little physical activity—have emerged as a new concern for chronic disease prevention and are associated with increased risk of type 2 diabetes, cardiovascular disease, some cancers, and all-cause mortality. Urban-dwelling working adults can sit for 10 h or more per day, which increases health risks, even among those who meet physical activity guidelines. Prolonged periods of sitting includes time spent in cars and can be associated with increased cardiovascular disease risk and poorer mental health.

In high-income countries, time in cars, television viewing, and other screen use account for up to 85% of adults’ non-occupational sitting time. Worldwide, sedentary behaviours are rapidly rising as LMIC shift from agricultural to manufacturing and service economies with increased use of labour-saving devices and more motorised forms of transport.

Urban design and planning attributes (particularly for density, diversity of land-use, availability of multiple local destinations, and distance to transport and local amenities that provide a range of more active choices for daily living options), can help to reduce sitting time. A recent review of 17 studies identified 89 associations between environmental attributes and sedentary behaviours; the most consistent finding was that people living in large urban areas spend less time sedentary than do those living in smaller towns or cities. Large urban areas of high-income countries often have more extensive public transport infrastructure, which allows more residents to spend less time sitting in private vehicles. Given the rapid changes being observed globally, research is needed in this emerging area.
Unhealthy diets

Worldwide 2·6 million deaths a year are attributable to insufficient fruit and vegetable intake, and an estimated 2·1 billion people are overweight or obese. A growing evidence base has examined the relationship between food purchasing, diets, and urban food environment land-use characteristics: food availability (ie, food supply) and food accessibility (ie, food supply location and physical proximity). The availability and variety of healthy food are consistently and positively associated with better diets, with supermarket density related to higher fruit and vegetable consumption. Conversely, fast-food availability is positively associated with fast-food purchasing, fast-food consumption, and obesity risk, and these are strongly associated with socioeconomic disadvantage.

The evidence linking health and food accessibility (as measured by proximity) is less consistent, especially for fast-food access. In urban settings, supermarket proximity has been associated with higher fruit and vegetable intake and reduced prevalence of obesity, even for people with no private motor vehicle access. Conversely, living in areas with poor access to healthy and affordable food might require residents without accessible public or private transport to shop in smaller local stores with limited variety, poorer quality, and higher prices, thereby compromising food security and potentially widening inequities.

Preservation of local arable land is crucial for the long-term food supply. To feed the world’s growing population will need up to 100% more food by 2050. Consequently, land-use policies that protect and support agriculture in urban and peri-urban settings are essential to reduce inequities by facilitating access to local food.

Implications of urban planning and design initiatives in LMICs

Translation of evidence from high-income countries into appropriate policies for LMICs, where urban environments often differ greatly, can be challenging. For example, in most middle-income countries, overall density patterns are considerably higher and cities tend to be more compact and monocentric (with jobs, cultural opportunities, and activities located mainly in the city centre). Urban residents in LMICs also depend heavily on informal and relatively inexpensive on-demand transport services (eg, private taxis, buses, cycles, motorcycles, and rickshaws). These informal services often contribute to congestion, air pollution, and reduced traffic and personal safety. Finally, compared with both high-income and middle-income countries, low-income countries tend to have lower degrees of urbanisation, fewer employment opportunities, and poorer availability and quality of public services (eg, public transportation).

Insufficient separation of pedestrians and motorised transport, particularly in LMICs, reduces pedestrian safety and increases road trauma. Additionally, rapid urbanisation combined with a lack of adequate traffic regulation results in a large and growing burden of disease associated with road injuries, road deaths, and high crime rates.

Greater social inequities are also observed between and within all LMIC. These factors include inequities in access to the basic building blocks of health-promoting urban development (eg, sanitation, adequate housing) as well as higher order infrastructure and services that create health and wellbeing and make cities liveable (eg, access to public open spaces, education, and health services). These urban challenges now feature in the UN’s Sustainable Development Goals.

While walking for commuting purposes is usually more prevalent among urban populations in LMICs, access to health services, sanitation, clean water, and adequate housing is less common. In many Asian and African countries, powered two-wheelers (motorbikes and scooters) are the preferred low-cost high-mobility vehicles for both commercial and personal purposes, contributing to high rates of road trauma.

The popularity of electric bikes could help to reduce air pollution and ambient noise levels, thereby addressing some of the health impacts of motorised traffic in cities. However, if powered two-wheeler travel is substituted for walking, this will reduce physical activity, increase obesity, and increase the already growing levels of road trauma. For example, in China, rapid increases in motorisation in the 1990s saw a doubling of obesity in men (but not women) whose households gained a motor vehicle. Further, LMICs have seen substantial recent changes to their food supply chains, moving from subsistence farming to processed foods from supermarkets and convenience stores. Hence, complex interactions are at play when planning cities to improve health in LMICs.

So far there is little evidence from LMICs from which other cities and countries can learn. Over recent decades, several Latin American cities (eg, Curitiba, Brazil; Bogotá, Colombia; and Mexico City, Mexico) have implemented extensive bus rapid transit systems, which have overcome transport inequities and improved access to public services (eg, health care) and employment opportunities, as well as increasing physical activity levels. Additionally, affordable housing programmes have reduced the proportion of people living in slums and degraded areas, and increased access to clean water, sanitation, and transport. In recent years, cycle-sharing programmes have been established in many Latin American cities. From 1993 to 2007, China (the country with the largest number of cycles and cyclists) had a drastic decline in cycle ownership (from 197 cycles per 100 households to 133 cycles per 100 households). However, since 2005, large-scale cycle-sharing programmes have been implemented in most of China’s major cities.

The potential for initiatives to increase inequities must also be considered. In Latin America, although small
increases in bicycle use have been observed, most bicycle-share programmes are implemented in socioeconomically advantaged areas.120 Similarly, in Hangzhou, China, members of bicycle-share programmes were found to have a higher rate of car ownership than non-members, probably because those who did not have a car used their own bicycles.121 Additionally, many housing projects implemented in Latin America lack integrated planning, resulting in limited access to services.22 Finally, the implementation of large-scale projects (eg, Olympics in Beijing and Rio de Janeiro) could improve outcomes in some areas (eg, access to public transport) but increase inequities (eg, displacement of low-income residents to outer suburbs with no public transport and amenities).

Hence, in LMICs, there is potential for health inequities to widen if insufficient attention is paid to integrated land-use, transport, housing, and infrastructure legislation and planning. The poor resources and the rate of economic and societal change can make integrated planning in LMICs seem challenging. However, integrated planning could optimise the use of existing resources and help to avoid unintended consequences, particularly those of large-scale interventions, which should be well evaluated both before and after implementation.

Discussion

The escalating personal, social, and economic burden imposed by rapidly rising rates of NCDs and their risk factors,12 together with the health and societal impacts of climate change,21 will produce immense human and environmental harm that threatens to undermine global social and economic development and security.12 Between now and 2030, an estimated US$58 trillion is needed worldwide to upgrade, maintain, and develop urban infrastructure to meet growing demand and the challenges of the 21st century.126

Designing pedestrian-friendly and cycling-friendly cities will help to reduce inequities and produce co-benefits across multiple sectors,127,128 including health, traffic management, environment (mobility, air quality, energy, water, and climate change), and the economy.129 Better planned and designed cities will help to build communities by decreasing commute and mandatory travel times away from one’s neighbourhood.129

City planning is therefore an essential element of a multilevel, multisector response to face the major global health challenges of the 21st century. Appropriate legal, administrative, and technical urban planning and design frameworks are urgently needed to create more compact cities that facilitate active travel modes to promote health and lower greenhouse gas emissions.4,121

We identified eight integrated regional and local urban and transport planning and design interventions to influence transport mode choices. Land-use, transport, and infrastructure interventions and policies interact to create a built form that affects the feasibility and attractiveness of using active travel modes.122 We have argued that travel mode choices affect health through their impact on eight environmental, social and behavioural risk exposures.

Creating cities that produce health and wellbeing outcomes needs both regional and local policies that prioritise walking, cycling, and public transport use over private motor vehicle travel. At the local level, good urban design will only be fully effective if supported by well-implemented city-wide and region-wide integrated policies that create accessible employment, education, services, and high-quality public transport.125

Changing the entrenched patterns of automobile-centric urban development that are contributing to the NCD pandemic, road traffic injuries, and other adverse health outcomes needs broad social, political, and economic changes as well as multisector involvement. Although integrated land-use and transport planning is vital, land use and transport are typically planned by different agencies and studied by different disciplines.126 These institutional and disciplinary disconnections are at the heart of many of the health risk exposures and outcomes identified in our model. A consortium of European countries is already taking steps to address the need for co-ordination across sectors.123 However, as suggested by the Organisation for Economic Co-operation and Development,11 leadership from transport, planning, and health ministers is urgently needed to facilitate action and overcome barriers.

Academic leadership is also needed. This includes interdisciplinary research and expanding interdisciplinary tertiary and workforce development programmes that bring together health and the built environment fields.127 However, mobilising and supporting community engagement and action is also critical.124 Local citizenry could influence both political and private sectors by demanding urban planning and design that facilitates walking, cycling, and public transport.

Transport is a determinant of health that contributes to the existence, persistence, and (sometimes widening of) health inequities within and between cities.120 In cities around the world, the mobility benefits afforded by private and public motorised travel are less accessible to the poor and disadvantaged (including elderly, disabled, and young people) who are also more likely to experience the externalised costs of motor vehicle dependency (eg, exposure to noise, pollution, and road trauma).23,49-51 Urban and transport planning must therefore prioritise policies, infrastructure, and services that favour the most socioeconomically disadvantaged populations.

There is a need to benchmark and monitor progress on the implementation of policies, and to track changes in health impacts. WHO has proposed a set of urban indicators to reduce inequities.125 We extend this work in table 2 in which we set out city planning indicators and outcomes that could be used to compare within and between cities.

\[\text{Table 2: City Planning Indicators and Outcomes}\]
This Series paper has a few limitations. Although the evidence presented on how multiple aspects of urban form can affect health is relatively consistent, most studies are cross-sectional and done in high-income countries. How findings translate in LMICs is yet to be determined. Stronger longitudinal evidence is needed across the board, particularly from natural experiment studies of policy interventions, that would allow policy impacts to be monitored to learn what works in different contexts, particularly in LMICs experiencing rapid changes in patterns of urbanisation. Further investigation. Although we drew on systematic reviews and meta-analyses where available, we undertook a narrative, rather than a formal systematic review. Finally, many issues were not considered here, but could be investigated in the future. These include the impact of planning decisions on other risk exposures (eg, alcohol consumption and gambling) and gender freedom or safety on public transport.

Legal, administrative, and technical frameworks contextualised to local conditions are needed to deliver compact pedestrian-friendly and cycling-friendly cities that reduce private motor vehicle dependency. Although the final mix of urban and transport planning and design interventions will vary, the overall goal must be to create cities that reduce NCDs, road injuries, and other adverse health outcomes.
health risks through promotion of active lifestyles and protection of citizens from traffic, environmental pollution, noise, crime, and violence. Achievement of healthier and more compact cities will need well implemented regional and local planning policies that integrate planning for land use, transport, housing, economic, and infrastructure with urban design.

Contributors
BG-C, RR, GT, JFS, and MS conceptualised the paper. BG-C, AV-M, RR, GT, ALD, HB, SF, ML, and NO drafted sections. BGC, AVM, and NO responded to critical review. All authors reviewed the literature and critically edited the Series paper.

Declaration of interests
ML reports grants from the Department of Health and Human Services, Victorian Government, Australia. JFS reports grants from Nike, California Endowment, Centers for Disease Control and Prevention, National Institute of Diabetes, Digestive, and Kidney Diseases; personal fees from Center for Active Design, San Diego State University, San Diego State University Research Foundation, and Sanotech; non-financial support from Thai Health Promotion Foundation, International Conference of Behavioral Medicine, Institute of Medicine Dr Mohan’s Diabetes Specialty Centres (Chennai, India), Haifa University (Israel), University of Texas (Austin, TX, USA), Fogarty International Center of National Institutes of Health, American College of Sports Medicine, Universidad Autonoma de Nueva Leon (Monterrey, Mexico), National Council of La Raza Health Summit, Aspen Institute, Urban Land Institute Conference, and Conference of Southwest Funders; and personal fees and non-financial support from Sociedade Brasileira de Atividade Física e Saúde, International Society of Physical Activity and Health, Oregon Chapter of the American Planning Association, University of Nevada Las Vegas, Harvard School of Public Health, Department of Parks, Recreation, and Tourism Management, North Carolina State University, Arizona State University, School of Nutrition and Health Promotion, Kuwait Institute for Scientific Research, RAND Corporation, National Association of Chronic Disease Directors, University of Washington (Seattle, WA, USA), and TKF Foundation. All other authors declare no competing interests.

Acknowledgments
BG-C, MS, and NO are funded by National Health and Medical Research Council (NHMRC; Australia) Research Fellowships (numbers 1107672, 1043091, and 1003960 respectively). HB and ML are supported by the National Health and Medical Research Council (NHMRC; Australia) Research Fellowships (numbers 1107672, 1043091, and 1003960 respectively). HB and ML are supported by the Robert Wood Johnson Foundation. BGC, MS, and NO are funded by National Health and Medical Research Council (NHMRC; Australia) Research Fellowships (numbers 1107672, 1043091, and 1003960 respectively). HB and ML are supported by the National Health and Medical Research Council (NHMRC; Australia) Research Fellowships (numbers 1107672, 1043091, and 1003960 respectively). HB and ML are supported by the Robert Wood Johnson Foundation.

References

Michimi A, Winder MC. Associations of supermarket accessibility with obesity and fruit and vegetable consumption in the conterminous United States. Int J Health Geogr 2010; 9: 49.

Winkler E, Turrell G, Patterson C. Does living in a disadvantaged area mean fewer opportunities to purchase fresh fruit and vegetables in the area? Findings from the Brisbane food study. Health Place 2006; 12: 306–19.

Hino AA, Reis RS, Sarmiento OL, Parra DC, Brownson RC. Built environment and physical activity for transportation in adults from Curitiba, Brazil. *J Urban Health* 2014; 91: 466–62.

Hino AA, Reis RS, Sarmiento OL, Parra DC, Brownson RC. Built environment and physical activity for transportation in adults from Curitiba, Brazil. *J Urban Health* 2014; 91: 466–62.

